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Abstract—Stochastic unit commitment models typically handle
uncertainties in forecast demand by considering a finite number
of realizations from a stochastic process model for loads. Accurate
evaluations of expectations or higher moments for the quantities
of interest require a prohibitively large number of model evalu-
ations. In this paper we propose an alternative approach based
on using surrogate models valid over the range of the forecast
uncertainty. We consider surrogate models based on Polynomial
Chaos expansions, constructed using sparse quadrature meth-
ods. Considering expected generation cost, we demonstrate the
approach can lead to several orders of magnitude reduction in
computational cost relative to using Monte Carlo sampling on
the original model, for a given target error threshold.

Keywords—Stochastic Unit Commitment, Monte Carlo Sam-
pling, Polynomial Chaos Expansion

I. INTRODUCTION

Unit commitment (UC) is the fundamental process of
scheduling thermal generating units in advance of operations in
the electric power grid [1]. The objective is to minimize overall
production costs to satisfy forecasted demand for electricity,
while respecting constraints on both transmission (e.g., thermal
limits) and generator infrastructure (e.g., ramping limits). Eco-
nomic dispatch (ED) is a closely related operations problem, in
which cost minimization is performed to identify an optimal
set of power output levels for a fixed set of active thermal
generating units. UC and ED are respectively formulated as
a mixed-integer and linear optimization problems, and solved
using commercial solvers. Despite improvements in forecasting
technology, next-day demand predictions are imperfect, with
errors on average in the 1-3% range and exceeding 10% on
specific days [2]. To account for such inaccuracies, reserve
margins are universally imposed in UC. These margins implic-
itly deal with uncertainty in load forecasts, by ensuring there is
sufficient generation capacity available to meet unexpectedly
high demand during operations.

An alternative approach to dealing with forecast errors
in UC is to explicitly model the load uncertainty, typically
via a finite set of sampled realizations from a stochastic
process model of load. This approach results in a stochastic
UC model (SUC), in which the objective typically is to
minimize the expected cost across the load scenarios [3], [4].
By explicitly representing the inherent uncertainty in load
forecasts, a SUC solution ensures sufficient flexibility to meet
a range of potential load realizations during next-day opera-
tions. Further, by explicitly representing uncertainty, reliance
on reserve margins is reduced, yielding less costly solutions

than those obtained for the deterministic UC problems. While
not considered here, we note that the problems induced by
increasing rates of renewables (e.g., wind and solar) generation
penetration accentuates the differences between stochastic and
deterministic UC problems, due to increased errors in the next-
day forecasts relative to load. While conceptually appealing,
the computational difficulty of stochastic UC is well-known
[5], such that it is not presently used in practice. The difficulty
is primarily driven by the number of forecast samples required
to achieve high-quality, robust solutions.

Uncertainties such as those found in stochastic UC are
ubiquitous in both power systems operations and planning,
and the importance of credibly accounting for them is well-
recognized. However, the lack of advanced methods to handle
uncertainty and the limitations of scenario-based approaches
have led researchers to seek alternatives. For example, Thiam
and DeMarco [6] argue: “Simply put, when uncertainty is cred-
ibly accounted for such methods yield solutions for economic
benefit of a transmission expansion in which the “error bars”
are often larger than the nominal predicted benefit.” Instead,
Thiam and DeMarco [6] propose an “oblivious approach” to
transmission expansion that does not take into account the
uncertainties in the inputs. We agree that an oblivious approach
is more credible than simply ignoring large error bars in
estimations. However, we posit that with proper modeling and
sampling algorithms, the errors incurred in such analyses can
be drastically reduced. Of course, it is not possible to change
the nature of uncertainties, such that if uncertainties are so
large that they fail to provide significant information, oblivious
approaches may be appropriate. However, as we argue in this
paper, it is possible to reduce additional uncertainties and
inefficiencies introduced due to poor modeling and sampling.

In this paper, we propose to adopt advanced modeling
and sampling techniques from the uncertainty quantification
(UQ) community, and leverage them to impact power systems
operations problems such as stochastic UC and ED. Such
techniques have been successfully applied in many areas of
computational science and engineering, with great success [7].
Most studies analyzing uncertain power system operations
problems generate forecast scenarios by drawing random
samples from a stochastic process using standard Monte
Carlo (MC) techniques. In this paper, we consider instead
an alternative approach based on using Polynomial Chaos [8]
expansions, built using sparse quadrature methods, as surrogate
models valid over the range of the forecast uncertainty. We
demonstrate that our approach yields a one to two order of



magnitude reduction in the number of samples required to
estimate expected generation cost, relative to MC, for a given
target error threshold. Consequently, our approach has the
potential to dramatically drop the computational difficulty of
stochastic UC and ED, significantly reducing the barriers to
its use in practice.

The remainder of this paper is organized as follows. We
briefly introduce our stochastic UC and ED formulations in
Section II, to provide context for our research. In Section III,
we detail our surrogate models of load for stochastic UC / ED,
based on Polynomial Chaos expansion. We then empirically
analyze the accuracy of our surrogates on standard IEEE test
problems in Section IV, and conclude in Section V.

II. STOCHASTIC COMMITMENT AND DISPATCH

We now describe a generic formulation of the stochastic
UC problem. Our formulation is based on the deterministic
mixed-integer linear UC formulation introduced by [1]. Let
G and T denote the index sets of thermal generating units
and time periods, respectively. We abstractly define the set
of unit commitment constraints (i.e., operational and physical
constraints on physical units) as X and let xxx denote the vector
of unit commitment decisions. The stochastic UC problem is
then given as follows:

min
xxx

cu(xxx)+ cd(xxx)+Q(xxx) (1a)

s.t. xxx ∈ X, (1b)

xxx ∈ {0,1}|G|×|T | (1c)

The objective terms cu(xxx) and cd(xxx) represent generating
unit start-up and shut-down costs, respectively, and Q(xxx)
denotes the expected generation cost. The UC constraints
prescribed by X include minimum on-off requirements and
linearization of startup and shutdown costs.

We treat the loads Dt for all t ∈ T as random vari-
ables (RVs). We begin by setting up a requisite theoretical
framework as follows. Define the probability space (Ω,S,P),
where Ω is a sample space, S is a σ-algebra on Ω, and
P is a probability measure on (Ω,S). Further, defining the
germ ξξξ = {ξ1,ξ2, . . . ,ξ|T |} as a set of independent identically
distributed (iid) RVs in L2(Ω,S,P), to be further specified
below, we focus on the probability space (Ω,Sξξξ,P) employing
the sigma algebra generated by ξξξ. We define the uncertain
loads as RVs Dt(ω) : Ω→ R in L2(Ω,Sξξξ,P), such that we
may write, by construction, Dt := Dt(ξξξ(ω)), ∀t ∈ T .

Given the uncertain loads expressed as RVs, the cor-
responding generation cost Q(xxx,ξξξ(ω)) is similarly uncer-
tain/random. The expected generation cost, denoted Q(xxx), is
defined as

Q(xxx) = EξξξQ(xxx,ξξξ(ω)) (2a)

and the uncertain (multi-period) economic dispatch problem
under a fixed unit commitment xxx is given by

Q(xxx,ξξξ(ω)) =

min
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t∈T
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cP

g (pt
g)+ ∑
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and Ru
g/Rd

g , Su
g/Sd

g represent nominal ramp-up/ramp-down
rates, startup/shutdown ramp rates, respectively.

Note that because the loads are RVs, all solution variables
are necessarily RVs. For brevity of notation, we have only
included the explicit dependence on ξξξ(ω) in Dt and Q, thereby
emphasizing the randomness of inputs/output of interest only.

The optimization objective in stochastic ED is to minimize
the expected total production and loss-of-load costs. The first
term in (3a) represents total production cost. The second term
represents the loss-of-load penalty, where qt is the unit (e.g.,
MW) of load unsatisfied in period t. Typically, the load-
shedding penalty is equal to a large number M. Constraints
(3b)-(3e) specify operational constraints, and include (in or-
der): power balance at each period (3b); lower and upper
bounds for committed generation unit output levels (3c); and
generation ramp-up and ramp-down constraints for pairs of
consecutive time periods (3d) and (3e).

A quadratic production cost function, given below, is
typically employed in scheduling electricity grid operations.

cP
g (pt

g) = agxt
g +bg pt

g + cg(pt
g)

2 (4)

Equation (4) can be accurately approximated by a set of
piecewise linear segments. For conciseness, we omit these
standard linearization steps. For a detailed treatment on the
linearization of the quadratic cost function please refer to [1].

The stochastic ED problem is embedded as a sub-problem
in the stochastic UC problem. The high-level context in
stochastic UC is the presence of uncertainty in future loads
(and, more generally, renewables and system component fail-
ures). In stochastic UC, the first-stage decisions are the unit
commitment selections xxx, and the objective is to minimize the
expected generation costs. In the second (recourse) decision
stage, uncertain loads result in uncertain recourse decisions for
the dispatch variables ppp and qqq, and associated generation and
load shedding costs. First-stage unit commitment decisions are
determined by taking their future impacts into consideration.
These future impacts are quantified by the recourse function
Q(xxx), which computes the expected value of generation cost
for a given unit commitment xxx.

We can estimate the expected generation cost by using a
finite number of load realizations (i.e., scenarios) s∈ S sampled



from the joint density p(DDD), where DDD = {D1,D2, . . . ,D|T |}.
Defining ρ≡ 1/|S|, formulation (1) can be rewritten as:

min
xxx

cu(xxx)+ cd(xxx)+ρ ∑
s∈S

Q(xxx,s) (5a)

s.t. xxx ∈ X, (5b)

xxx ∈ {0,1}|G|×|T | (5c)

where Q(xxx,s) =

min
ppp,,,qqq ∑

t∈T
∑

g∈G
cP

g (pt
g)+ ∑

t∈T
Mqt (6a)

s.t. ∑
g∈G

pt
g−qt = Dt

s, ∀t ∈ T (6b)

Pgxt
g ≤ pt

g ≤ Pgxt
g, ∀g ∈ G, t ∈ T (6c)

pt
g− pt−1

g ≤ RU(xt−1
g ,xt

g), ∀g ∈ G, t ∈ T (6d)

pt−1
g − pt

g ≤ RD(xt−1
g ,xt

g), ∀g ∈ G, t ∈ T. (6e)

Formulation (5) represents an extensive form of the stochas-
tic UC problem, based on |S| sampled scenarios of load
realizations. Formulation (3) can be similarly discretized.

III. ACCURATE ESTIMATION WITH LIMITED SAMPLES

The typical scenario sampling approach described above
uses Monte Carlo (MC) sampling to approximate an integra-
tion, thereby estimating an expectation. While MC algorithms
are commonly used for their convenience and robustness, their
poor convergence rate is well-known. The MC estimate of the
expectation has error

V[Q(xxx,ξξξ)]/
√
|S|, (7)

where V[Q] denotes the variance of the RV Q. Given the signif-
icant additional complexity incurred by including stochasticity
in the optimization problem, a stochastic formulation becomes
advantageous relative to a deterministic formulation when the
variance is large. Hence, accurate estimation of the expectation
is not only an academic exercise but is important in practice.

According to Eq. (7), accurate estimation can be achieved
by increasing the number of samples. However, a linear
decrease in error requires a quadratic increase in the number of
samples, which can quickly render the stochastic optimization
problem intractable. This illustrates the limitation of MC
algorithms in providing accurate estimations; while they are
convenient, they are not efficient.

Similar problems arise in uncertainty quantification (UQ)
for computational science in general, where each sample point
typically corresponds to a full simulation. Here, estimation
accuracy is of paramount importance, as simulation results may
lead to scientific discoveries or high-impact policy decisions.
The need for accurate estimation of uncertain model outputs,
along with the prohibitive cost of MC samples, have lead to
the development of efficient alternatives to MC methods in
UQ. In this paper, we illustrate how we adopt such methods
for stochastic optimization problems in power systems. The
details of the proposed method will be explained subsequently.
The key utility of the proposed approach is that it enables, in
a preprocessing step, efficient construction of a compact, ac-
curate, and computationally inexpensive representation of the

input-output map of the uncertain system. This representation
is then used as a surrogate for the dependence of select model-
output quantities of interest (QoIs) on uncertain model inputs.
Using this surrogate, rather than the original system governing
equations, enables accurate estimation of uncertain QoIs, and
associated expectations, with minimal costs beyond those of
surrogate construction.

A. Representation of uncertainty using Polynomial Chaos

Given the formulation in Eq. (3) with uncertain/random
loads leading to uncertain/random generation costs, we employ
efficient UQ methods that rely on functional representations of
random variables. Specifically, we use Polynomial Chaos (PC)
expansions. A brief description of PC is presented below. For
an in-depth description, the reader is referred to a series of
publications on this topic [8]–[11].

Considering the above defined germ ξξξ and the associated
probability space (Ω,Sξξξ,P), any RV X : Ω → R, where
by construction X ∈ L2(Ω,Sξξξ,P), can be written as a PC
expansion (PCE):

X(ω) = X(ξξξ(ω)) =
∞

∑
k=0

αkΨk(ξξξ) (8)

where the basis functions Ψk are multivariate polynomials∗ that
are orthogonal, by construction, with respect to the density of
ξξξ. Thus

〈ΨiΨ j〉=
∫

Ψi(ξ)Ψ j(ξ)dP(ξ) = δi j〈Ψ2
i 〉 (9)

where δi j is Kronecker’s delta. Further, given this orthogonal-
ity, we have

αk =
〈XΨk〉
〈Ψ2

k〉
(10)

where the inner product is defined, for any RV Z(ξξξ), by the
Galerkin projection

〈Z〉=
∫

Z(ξξξ)pξξξ(ξξξ)dξξξ. (11)

Moreover, the Ψk are products of univariate polynomials,
namely Ψk(ξξξ) = ψk1(ξ1) · · ·ψkn(ξn), where n = |T |. In a prac-
tical computational context, one truncates the PCE to order p.
The number of terms in the resulting finite PCE

X ≈
P

∑
k=0

αkΨk(ξξξ) (12)

is given by P+ 1 = (n+ p)!/n!p!. We dispense with the ≈
symbol in the remainder of this paper, employing for any RV
X(ξξξ) its truncated PCE

X =
P

∑
k=0

αkΨk(ξξξ). (13)

Generalized PC (gPC) expansions have been developed by [11]
using a broad class of orthogonal polynomials in the ”Askey”
scheme [12]. Each family of polynomials corresponds to a
given choice of distribution for the ξi and is, by construction,

∗Generally, other, non-polynomial basis functions can be used, but we
restrict ourselves here, without loss of generality, to the most common
polynomial-based usage.



orthogonal with respect to the density of ξi. In general, the
most useful choices for (ξξξ,Ψ) are uniform RVs with Legendre
polynomials and normal RVs with Hermite polynomials.

B. Surrogate Construction

We employ Legendre-Uniform (LU) PC, as it is most
useful for purposes of surrogate construction. Further, in this
particular context, i.e., explicitly for surrogate construction, a
key first step is to define the input random variables as iid
uniform over their ranges of interest. This does not restrict the
utility of the approach to iid uniform load distributions. Rather,
the uniform assumption is simply to ensure uniform accuracy
in the surrogate over the range of loads variability. Once the
surrogate is available, providing effectively the input-output
map, any p(DDD) can be employed, as is further outlined below.

Since, by construction, for LU PC, ξt
iid∼U(−1,1), ∀t ∈ T ,

defining Dt iid∼U(Dt
min,D

t
max), we have the PCE for Dt given

simply by

Dt = ξt
Dt

max−Dt
min

2
+

Dt
max +Dt

min
2

, ∀t ∈ T. (14)

In this context we employ Eq. (13) to represent Q(xxx,ξξξ) with
a truncated LU PCE

QPC(xxx,ξξξ) =
P

∑
k=0

ck(xxx)Ψk(ξξξ), (15)

where Ψk(ξξξ) are n-variate Legendre polynomials (n = |T |).
The coefficients ck depend on the discrete variable xxx, hence
separate PCE approximations for Q will be constructed for
each instance of xxx. Given Eq. (11), we have

ck(xxx) =
〈QΨk〉
〈Ψ2

k〉
=

1
〈Ψ2

k〉

∫
[−1,1]n

Q(xxx,ξξξ)Ψk(ξξξ)dξξξ. (16)

where we have used pξξξ(ξξξ) = 1, for ξξξ ∈ [−1,1]n.

Given QPC(xxx,ξξξ), then for the given Dt iid∼ U(Dt
min,D

t
max),

∀t ∈ T , we have immediately that

Q(xxx) = Eξξξ[Q(xxx,ξξξ)] = 〈Q(xxx,ξξξ)〉= c0, (17)

being the solution of the stochastic ED problem, as required
for the stochastic UC problem specified in Eq. (1).

Beyond this, however, the PCE QPC(xxx,ξξξ) can be used as
a surrogate for the ED problem solution Q(xxx,ξξξ). Specifically,
QPC(xxx,ξξξ(DDDs)) ≈ Q(xxx,s) (see Eq. 6) for any demand DDDs ∈ D
where D= {DDD|Dt ∈ [Dt

min,D
t
max]∀t ∈ T}, employing

ξt =
2Dt − (Dt

max +Dt
min)

Dt
max−Dt

min
, ∀t ∈ T. (18)

Thus, for any arbitrary p(DDD), the PCE QPC(xxx,ξξξ(DDD)) can be
used to efficiently provide samples Q(xxx,s) given random sam-
ples DDDs ∼ p(DDD), as long as DDDs ∈ D. Thus, the MC estimation
of the expectation Q = ρ−1

∑s∈S Q(xxx,s) in Eq. (5a) can be
done with arbitrarily large |S| given the low cost of samples.
Alternatively, for any p(DDD), one can employ the PCE for
DDD(ηηη), where ηηη is suitable PC germ, and use sparse-quadrature
methods outlined below to evaluate projection integrals – but
now using as forward model the surrogate QPC(xxx,ξξξ(DDD(ηηη))),
to arrive at the PCE for Q(xxx,ηηη), from which one easily has
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Fig. 1. Placement of deterministic samples via a sparse grid approach.

Q≡ c0, as long as the sparse-quadrature samples DDD(ηηηq) ∈ D.
The only remaining issue is the evaluation of the projection
integrals in Eq. (16), which we discuss below.

C. Evaluation of the Projection Integrals

Several methods can be employed to evaluate the projection
integrals in Eq. (16). MC methods can be used in principle,
but are impractical given their slow convergence rate. Alterna-
tively, for smooth integrands, and particularly in low-moderate
dimensional problems, sparse quadrature methods [13]–[15]
can provide highly accurate results with smaller numbers
of deterministic samples. Figure 1 shows the locations of
deterministic samples we use, with a sparse grid employing
Clenshaw-Curtis quadraure. Several nested levels are shown
in the figure, with “+”, “x”, and “o” markers to illustrate
the fact that model evaluations can be re-used if higher-
order approximations are necessary. The number of requisite
samples using sparse-quadrature evaluation of the projection
integrals, for a given requisite surrogate accuracy, is much
smaller than the corresponding number of MC samples, as
we now illustrate.

IV. NUMERICAL RESULTS

We now present numerical results comparing the calcula-
tion of the expected cost of ED via our proposed surrogate
model with the classical approach via Monte Carlo scenario
sampling. We consider two cases: a 9-bus example [16] and the
IEEE 118-bus test system [17]. We vary the number of time
periods |T | from 6 to 24. Following the model and analysis in
[1], we relax transmission constraints and focus on generating
unit characteristics. In Figure 2, we show a typical load series
for the IEEE 118 bus test system. The red bars depict a 20%
uncertainty range around the nominal values.

We first proceed to test the accuracy of the PCE surrogate
for Q(xxx,ξξξ(DDD)) with respect to full model evaluation. For
this exercise we select the 9-bus model since the full model
evaluation is expensive, hence we can fully explore the high-
dimensional demand space. Table I shows the relative L2
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Fig. 2. Uncertain demand values for the IEEE 118-bus example. The error
range is 20% around the nomical values.

Order Sparse Quadrature
L2, 85p L3, 389p L4, 1457p L5, 4865p

1 1.62e-05 2.90e-05 2.15e-05 2.18e-05
2 - 7.48e-07 2.17e-07 7.83e-08
3 - - 1.92e-07 5.36e-08
4 - - - 2.10e-08

TABLE I. RELATIVE L2 ERROR AT TRAINING POINTS FOR SEVERAL
PCE SURROGATES AND SPARSE QUADRATURE LEVELS. POWER

GENERATION COST DISCRETIZED USING 10 SEGMENTS.

error computed with the discrepancies observed at quadrature
points between truncated PCEs, in Eq. (15), and the cost
values via direct evaluations. Several sparse quadrature levels
are employed. The table shows results for PCE orders from
1 through 4. A three-level sparse quadrature, denoted L3
in the table, is sufficient to construct a second-order PCE
model with a negligible error compared to the full model.
Moreover, depending on the purpose of the PCE model, a first-
order approximation can also be sufficient. Cross-validation
tests using ensembles with 106 random samples, results not
shown, confirm the high accuracy of the PCE model. Similar
tests indicate that point-wise discrepancies between the PCE
surrogate and the full model are less than 0.5% throughout the
computational domain for a 2nd order PCE.

Figure 3 illustrates the dependence of cost on the load in
specific time periods. This figure shows 2-dimensional slices
through the load spaces for the 9-bus (top frame) and 118-
bus (bottom frame) models. The cost Q in these graphics is
normalized by the expected value for each case, and ξt is
computed from Dt using Eq. (18).

Our research goal in this paper is to demonstrate the
efficiency of using PCE to compute (approximate) the expected
cost over all possible load realizations. Fig. 4 shows the
convergence of the standard deviation of the expected cost
for the 9-bus model with 6 load periods, evaluated using
an number of scenarios between 102 and 105. These results
indicate that about 104 samples are necessary to reduce the
relative error of the expected cost to below 10−3.

Figure 5 shows sample convergence rates for MC compared
to the PCE approach. For MC, a relative error of 10−3 requires
approximately 104 model evaluations. The number of model
evaluations is independent of the number of loads periods, and
is nearly the same for the 9-bus and 118-bus systems. For the
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Fig. 3. Top frame: Slice through a 6-dimensional 2nd order PCE model for
the 9-bus system. Bottom frame: Slice through a 24-dimensional PCE model
for the 118-bus system. The transparent surface shows the 3D dependence of
Q on the corresponding loads. Filled contours are projected on the side planes
to provide a qualitative view of the dependence on each load.

surrogate model approach, the number of model evaluations
represents the cost of building the PCE. This cost is higly
dependent on the dimensionality of the surrogate. For example,
the number of model evaluations for a 24-dimensional PCE
is one to two orders of magnitude larger compared to a 6-
dimensional PCE. Once the PCE is constructed, subsequent
evaluations of Q(xxx) incur negligible cost. Hence the efficiency
of the surrogate model approach over the routine MC approach
is proportional to the number of times Q needs to be evaluated
during a simulation. For the 118-bus model, 103 evaluations
of Eq. (2) results in a computational time about 104 times
smaller for the PCE approach compared to the traditional MC
approach.

V. CONCLUSION

In this paper, we present an approach to reduce the compu-
tational cost associated with stochastic unit commitment and
economic dispatch, by reducing the number of required fore-
cast samples. This approach is based on surrogate models for
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Fig. 4. Convergence of Q(xxx) = EξξξQ(xxx,ξξξ(DDD)) computed via MC vs PCE.
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of MC samples. The filled circles show ±σ for each ensemble, and the
horizontal line shows the values computed via PCE. The expectation values
are normalized by the “true” value obtained by MC using 106 samples.

the generation cost that cover the uncertainty of forecast load.
The surrogate models are constructed using Polynomial Chaos
Expansions. The construction of the terms in the surrogate
models is based on the projection of the model on increasingly
higher basis modes. Consequently, the global error in an L2
sense between the surrogate model and the actual simulations
is easily controlled.

We present computational results using 9-bus and 118-
bus test cases. For both of these cases, quadratic surrogate
models for the generation cost showed global L2 errors less
that 10−4 while pointwise errors were less than 1% throughout
the uncertain demand space. The construction of Polynomial
Chaos surrogate models typically requires a much smaller
number of samples, typically one to two orders of magnitude
for the examples considered in this paper, compared to Monte
Carlo evaluation of the expected generation cost for a given
requisite accuracy. Subsequent evaluation of the generation
cost statistics via surrogate models incurs negligible additional
cost, thereby potentially reducing the computational expense
of the forecast ensembles in a stochastic unit commitment and
economic dispatch by several orders of magnitude.
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